
第 16回：マッチング法
【教科書第 10章】

北村　友宏
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本日の内容

1. 平均処置効果

2. 傾向スコア・マッチング

3. 実証分析例
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処置群への平均処置効果
処置群への平均処置効果（average treatment effect
of treated, ATT）は，

ATT = E(y1i | di = 1) − E(y0i | di = 1)︸           ︷︷           ︸
観測不可能

. (1)

▶ y1i: 個体 iが処置を受けた場合の結果
（e.g.,生徒 iが朝食を食べた場合のテストの点
数，個人 iが職業訓練を受けた場合の年収，個
人 iが大学を卒業した場合の年収など）

▶ di: 処置を受けるなら 1,受けないなら 0とする
ダミー変数
（e.g.,朝食を食べるなら 1，職業訓練を受ける
なら 1，大学を卒業するなら 1，など）
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▶ E(y1i | di = 1): 処置を受けた個体 iが，処置を
受けた場合の結果の期待値

▶ y0i: 個体 iが処置を受けなかった場合の結果
（e.g.,生徒 iが朝食を食べなかった場合のテス
トの点数，個人 iが職業訓練を受けなかった場
合の年収，個人 iが大学を卒業しなかった場合
の年収など）

※ E(y0i | di = 1)は「処置を受けた個体が，仮に
処置を受けなかった場合の結果の（処置を受け
たグループ内での）期待値」なので観測不
可能．
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処置群への平均処置効果のイメージ
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処置群への平均処置効果の推定
▶ 標本サイズを nとすると，条件付き期待値を標
本平均で置き換えて，(1)の処置群への平均処
置効果（ATT）を，�ATT =

1∑n
j=1 d j

n∑
i=1

diy1i−
1∑n

j=1 d j

n∑
i=1

diy0i, (2)

のように推定する．

⇓
di = 1の（処置を受けた）個体 iに関して，y0i
は観測不可能．

⇓
di = 1の個体 iの y0i をどのように求めればよ
いか？ 6 / 30



マッチング法

▶ 処置を受けるか受けないかに影響を与える要
因を共変量（covariate）という．

▶ 処置を受けた個体と共変量が似ている個体を，
処置を受けなかった個体のグループから探し，
両者を比較して ATTを求める方法をマッチン
グ法（matching method）という．

▶ (2)の y0i には，マッチング法で見つけた，処置
を受けた個体 iと共変量が似ている，処置を受
けなかった個体を当てはめる．
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傾向スコア・マッチング

▶ 観測できる属性から予測される，処置を受ける
確率を傾向スコア（propensity score）という．

▶ e.g.,職業訓練プログラムへの参加資格を付与する
かどうかを決める際に考慮される，年齢，学歴，
職歴，家族構成などの属性から，その個人が職業
訓練プログラムに参加する確率を推定したもの．

▶ 傾向スコアに基づいて，処置を受けた個体と共
変量が似ている個体を，処置を受けなかった個
体のグループから探してマッチング法を実行
することを傾向スコア・マッチング
（propensity score matching）という．
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条件付き独立の仮定

▶ マッチング法における条件付き独立（mean
independent）の仮定は，

y0i ⊥ di | xi .

▶ xi：共変量ベクトル
▶ 「無視可能性の仮定」ともいう．
※ 確認することは不可能．

⇓
共変量を所与として，処置を受けることと「処置を
受けなかった場合の結果」が独立．
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共有サポートの仮定
▶ 共有サポート（common support）の仮定は，

0 < Pr(di = 1 | xi) < 1.

⇓
共変量を所与として，処置を受ける確率は 0%にな
らず，100%にもならない．

⇓
それぞれの共変量の値に対して，処置を受ける個体
と受けない個体の両方が必ず存在する．

⇓
処置を受けた処置群の個体にとって，自身と同じ共
変量をもつ個体が対照群にもいる．
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傾向スコア・マッチングの手順

1. 処置を受けるなら 1とするダミー変数（が 1に
なる確率）を被説明変数，共変量を説明変数と
する 2値応答モデル（e.g., 2値プロビット・モ
デル）を推定する．

2. 処置を受ける確率（傾向スコア）を予測する．
3. 傾向スコアの数値が近い個体同士で，処置を受
けた個体の結果の平均と処置を受けていない
個体の結果の平均を比較する（二標本検定や重
回帰分析なども行えば，より統計的に説得力の
ある分析になる）．その際に，共有サポートの
仮定が満たされているかどうかを確認する．
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▶ 教科書では，前スライドの 3. の作業について，
傾向スコアの分布を参考に，傾向スコアでいく
つかの階級に分け，階級内で ATTを推定する
方法が紹介されている．

▶ 傾向スコアの数値が近い個体同士をマッチン
グさせる，より高度な方法としては，以下の方
法などがある（詳細な説明は省略）．

▶ マハラノビス距離を用いる方法
▶ 完全マッチング
▶ 最近傍マッチング
▶ 半径マッチング
▶ カーネル・マッチング
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実証分析例：大卒プレミアムの推定
▶ 大卒プレミアム（大学を卒業した人と卒業して
いない人で年収にどの程度の差があるか）を推
定したい．

▶ もともと能力が高く，年収も高くなる傾向のあ
る人たちが大学を卒業しているのなら，大学に
行くことで年収が高くなったのではなく，大学
の効果とはいえない．

⇓

▶ 大学を卒業する「確率」が近い人たち同士で，
大卒の人とそうでない人の間での年収を比較
する．
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この分析では，以下のように設定する．
▶ 処置を受ける =大学を卒業する
▶ 処置群：

▶ 大卒の人

▶ 対照群：
▶ 大卒でない人

▶ 共変量：
▶ 父親が大卒であるかどうか
▶ 兄弟姉妹数
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4371人分のデータを用い，まずは以下の 2値プロ
ビット・モデルを推定し，大学を卒業する確率（傾
向スコア）を推定する．

cogradi =

{
1 if cograd∗

i > 0,
0 otherwise,

cograd∗
i = β0 + β1pacogradi + β2sibsi + ui,

ui | pacogradi, sibsi ∼ N(0, 1).

この 2値プロビット・モデルの別の表現は，

Pr(cogradi = 1 | pacogradi, sibsi)
= Φ(β0 + β1pacogradi + β2sibsi).

15 / 30



▶ cogradi: 大卒ダミー
▶ 大卒＝ 1
▶ 大卒でない＝ 0

▶ pacogradi: 父親大卒ダミー
▶ 父親が大卒＝ 1
▶ 父親が大卒でない＝ 0

▶ sibsi: 兄弟姉妹数

▶ Φ(.): 標準正規分布の累積分布関数
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2値プロビット・モデル推定結果
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傾向スコアのヒストグラム
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マッチング

前スライドのヒストグラムを参考に，ここでは，大
学を卒業する確率（傾向スコア）で，以下の 4つの
階級に分けて分析する．
▶ 傾向スコアが 0.24未満のグループ
▶ 傾向スコアが 0.24を超えて 0.29未満のグ
ループ

▶ 傾向スコアが 0.29を超えて 0.4未満のグ
ループ

▶ 傾向スコアが 0.4を超えるグループ
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共有サポートの仮定の確認（1）

「傾向スコア < 0.24」のグループ

「0.24 <傾向スコア < 0.29未満」のグループ
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共有サポートの仮定の確認（2）

「0.29 <傾向スコア < 0.4未満」のグループ

「傾向スコア > 0.4」のグループ
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共有サポートの仮定の確認結果

※ gretlでの出力結果の統計量名と数値の列がズ
レているので注意．

▶ どのグループにおいても，cogradの最小値が
0,最大値が 1.
⇒どのグループにも大卒者とそうでない人が
いる．
⇒どのグループも，共有サポートの仮定が満
たされている．

⇓
続いて，4つの各グループ内で，大卒者とそうでな
い人の年収の対数値の平均を比較する．
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年収の対数値の平均の比較
（傾向スコア < 0.24）

大卒者とそうでない人の年収の対数値（lincome）
の平均の差は，

5.768−5.145=0.623.
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年収の対数値の平均の比較
（0.24 <傾向スコア < 0.29）

大卒者とそうでない人の年収の対数値（lincome）
の平均の差は，

5.806−5.250=0.556.
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年収の対数値の平均の比較
（0.29 <傾向スコア < 0.4）

大卒者とそうでない人の年収の対数値（lincome）
の平均の差は，

5.588−5.080=0.508.
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年収の対数値の平均の比較
（傾向スコア > 0.4）

大卒者とそうでない人の年収の対数値（lincome）
の平均の差は，

5.717−4.914=0.803.
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確認：自然対数値の差

ln y1 − ln y0 ≈ y1 − y0

y0
.

（証明は省略）
⇓

自然対数値の差は変化率（を近似したもの）を表す．
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各グループの対数年収の平均と大卒プレ
ミアム

傾向スコア 大卒の対数年収 それ以外の対数年収 大卒プレミアム
～0.24 5.768 5.145 0.623

0.24～0.29 5.806 5.250 0.556
0.29～0.40 5.558 5.080 0.508

0.40～ 5.717 4.914 0.803

※ ここでいう大卒プレミアム，すなわち大卒者と
そうでない人の対数年収の平均の差が，処置群
における平均処置効果（ATT）となる．

▶ 「大卒でない人の対数年収」を，「実際に大学を卒
業した人が仮に大学を卒業しなかった場合の対数
年収」とみなしている．

28 / 30



▶ 「傾向スコア < 0.24」のグループ
▶ 大卒者はそうでない人に比べ，年収が平均的に

62.3%高い傾向がある．
▶ 「0.24 <傾向スコア < 0.29」のグループ

▶ 大卒者はそうでない人に比べ，年収が平均的に
55.6%高い傾向がある．

▶ 「0.29 <傾向スコア < 0.4」のグループ
▶ 大卒者はそうでない人に比べ，年収が平均的に

50.8%高い傾向がある．
▶ 「傾向スコア > 0.4」のグループ

▶ 大卒者はそうでない人に比べ，年収が平均的に
80.3%高い傾向がある．

⇒大学を卒業する確率が近い人たち同士で比べて
も，大学卒業による年収上昇効果が見られる．
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今日のキーワード

処置群への平均処置効果，共変量，マッチング法，
傾向スコア・マッチング，条件付き独立，共有サ
ポート
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